Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

trans-Bis(2,2'-bipyridine)dichloridoruthenium(II)

Peter Klüfers* and Anna Zangl

Ludwig-Maximilians-Universität, Department Chemie und Biochemie, Butenandtstrasse 5-13, 81377 München, Germany Correspondence e-mail: kluef@cup.uni-muenchen.de

Received 13 November 2007; accepted 13 November 2007

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.004 Å; R factor = 0.026; wR factor = 0.058; data-to-parameter ratio = 16.5.

In the title compound, $[RuCl_2(C_{10}H_8N_2)_2]$, the Ru atom is located on a crystallographic inversion center. The bipyridine (bpy) ligands are thus coordinated *trans*, leading to steric interactions between pairs of opposite ortho-H atoms. The result is a marked deviation from the expected planarity of some units; the two pyridine rings of an individual bpy ligand enclose a 23.8 (1) $^{\circ}$ angle. With the RuN₄ plane, the same pyridine rings enclose angles of 22.3 (1) and 21.0 (1) $^{\circ}$. The octahedral environment of the Ru atom, however, is not markedly distorted, with the Ru-Cl axis enclosing a $87.32 (6)^{\circ}$ angle with the RuN₄ plane. In the crystal structure, the most significant intermolecular interaction, besides the expected π stacking [3.424 (3) Å perpendicular distance of parallel-stacked rings, and 3.389 (3) Å closest ring-atom distance for an inclined contact], is a weak C-H···Cl hydrogen bond.

Related literature

Sullivan et al. (1978) describe the corresponding cis-coordinated complex which was used as the starting material for the synthesis of the title compound. Weathers et al. (1997) describe a related complex cation with the chlorido ligands of the title compound substituted by aqua ligands. For ring puckering analysis, see: Cremer & Pople (1975).

Experimental

Crystal data

$[RuCl_2(C_{10}H_8N_2)_2]$	V = 901.10 (6) Å ³
$M_r = 484.34$	Z = 2
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 7.0047 (3) Å	$\mu = 1.18 \text{ mm}^{-1}$
b = 14.9489 (6) Å	T = 200 (2) K
c = 8.7301 (3) Å	$0.15 \times 0.10 \times 0.06 \text{ mm}$
$\beta = 99.692 \ (2)^{\circ}$	

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2001) $T_{\min} = 0.763, T_{\max} = 0.932$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.026$	125 parameters
$wR(F^2) = 0.058$	H-atom parameters constrained
S = 1.06	$\Delta \rho_{\rm max} = 0.53 \ {\rm e} \ {\rm \AA}^{-3}$
2067 reflections	$\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$

10312 measured reflections

 $R_{\rm int} = 0.041$

2067 independent reflections

1719 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C3-H3\cdots Cl1^i$	0.95	2.72	3.573 (3)	150
Symmetry code: (i)	$-r - 1 v - \frac{1}{2} - \frac{1}{2}$	$7 - \frac{1}{2}$		

Data collection: COLLECT (Hooft, 2004); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

The authors thank Dr Matthias Hinrichs for professional support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2023).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2001). SADABS. Version 2. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Sullivan, B. P., Salmon, D. J. & Meyer, T. J. (1978). Inorg. Chem. 17, 3334-3341. Weathers, N. R., Sadoski, R. C., Durham, B. & Cordes, A. W. (1997). Acta Cryst. C53, 1047-1049.

supplementary materials

Acta Cryst. (2007). E63, m3088 [doi:10.1107/S1600536807058680]

trans-Bis(2,2'-bipyridine)dichloridoruthenium(II)

P. Klüfers and A. Zangl

Comment

The title compound, $C_{20}H_{16}Cl_2N_4Ru$, was obtained accidentally on the attempted preparation of $[Ru(cis-CptdH_2)(bipy)_2]$ (*cis*-CptdH₂ = twofold deprotonated *cis*-1,2-cyclopentanediol, bipy = 2,2'-bipyridine).

The molecular structure is shown in Fig. 1. The five-membered chelate ring Ru—N1—C5—C6—N2 adopts an envelope conformation on Ru ($Q_2 = 0.2785$ (17) Å, $\varphi_2 = 184.3$ (5)°). Ring-puckering parameters (Cremer & Pople, 1975) were calculated with *PLATON* (Spek, 2003).

Bond lengths and angles are comparable to similar compounds (Weathers et al., 1997).

The molecular packing is shown in Fig. 2 which shows a layer of molecules of (I) in the *bc* plane. Hydrogen bonds of the C–H···Cl type connect these layers along [100]. [100]-stacking is supported by π stacking of aromatic rings that enclose a 23.8 (1)° angle, the closest ring···atom contact being 3.389 (3) Å.

 π stacking is also observed for adjacent molecules along [001] between aromatic rings that are connected by an inversion center. The perpendicular ring distance is 3.424 (3) Å for this interaction.

Experimental

The title compound was obtained accidentally on the attempted preparation of $[Ru(cis-CptdH_2)(bipy)_2]$ by refluxing 58 mg (0.12 mmol) *cis*- $[RuCl_2(bipy)_2]$ (Sullivan *et al.*, 1978), 27 mg (0.26 mmol) *cis*-1,2-cyclopentanediol and 15 mg (0.27 mmol) KOH for 4 h in a solution of 1.4 ml H₂O and 4 ml 2-propanol under an inert gas atmosphere (N₂). When the closed reaction flask was left standing at room temperature in bright daylight, violet-black crystals were obtained after several months.

Refinement

All H atoms were included in calculated positions and refined as riding on their parent atoms with one common isotropic displacement parameter.

Figures

Fig. 1. The molecular structure of (I), with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.

Fig. 2. A layer of molecules of (I) in the *bc* plane.

i>trans-Bis(2,2'-bipyridine)dichloridoruthenium(II)

Crystal data	
$[RuCl_2(C_{10}H_8N_2)_2]$	$F_{000} = 484$
$M_r = 484.34$	$D_{\rm x} = 1.785 \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 6762 reflections
a = 7.0047 (3) Å	$\theta = 3.1 - 27.5^{\circ}$
b = 14.9489 (6) Å	$\mu = 1.18 \text{ mm}^{-1}$
c = 8.7301 (3) Å	T = 200 (2) K
$\beta = 99.692 \ (2)^{\circ}$	Platelet, black-violet
V = 901.10 (6) Å ³	$0.15\times0.10\times0.06~mm$
Z = 2	

Data collection

Nonius KappaCCD diffractometer	2067 independent reflections
Radiation source: rotating anode	1719 reflections with $I > 2\sigma(I)$
Monochromator: MONTEL, graded multilayered X-ray optics	$R_{\rm int} = 0.041$
T = 200(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ϕ and ω scans	$\theta_{\min} = 3.3^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2001)	$h = -9 \rightarrow 8$
$T_{\min} = 0.763, T_{\max} = 0.932$	$k = -19 \rightarrow 19$
10312 measured reflections	$l = -11 \rightarrow 11$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.026$	H-atom parameters constrained
$wR(F^2) = 0.058$	$w = 1/[\sigma^2(F_o^2) + (0.015P)^2 + 0.9494P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
2067 reflections	$\Delta \rho_{max} = 0.53 \text{ e} \text{ Å}^{-3}$

125 parameters

 $\Delta \rho_{min} = -0.56 \text{ e } \text{\AA}^{-3}$

Primary atom site location: structure-invariant direct methods Extinction correction: none

Special details

Experimental. $\mu \times r = 0.116$, $T_{min}/T_{max} = 0.899$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ru	0.0000	0.0000	0.0000	0.01748 (9)
Cl1	-0.18499 (9)	0.12549 (4)	-0.11057 (7)	0.02946 (15)
N1	-0.1977 (3)	-0.09044 (12)	-0.1129 (2)	0.0204 (4)
N2	0.1001 (3)	-0.02145 (12)	-0.2052 (2)	0.0206 (4)
C1	-0.3740 (3)	-0.11069 (15)	-0.0811 (3)	0.0243 (5)
H1	-0.4268	-0.0741	-0.0097	0.033 (3)*
C2	-0.4811 (3)	-0.18208 (16)	-0.1476 (3)	0.0290 (6)
H2	-0.6049	-0.1944	-0.1218	0.033 (3)*
C3	-0.4071 (4)	-0.23546 (17)	-0.2521 (3)	0.0339 (6)
H3	-0.4755	-0.2869	-0.2954	0.033 (3)*
C4	-0.2302 (4)	-0.21242 (16)	-0.2925 (3)	0.0319 (6)
H4	-0.1772	-0.2473	-0.3661	0.033 (3)*
C5	-0.1312 (3)	-0.13828 (15)	-0.2249 (3)	0.0223 (5)
C6	0.0355 (3)	-0.09807 (15)	-0.2809 (3)	0.0231 (5)
C7	0.1040 (4)	-0.12659 (18)	-0.4124 (3)	0.0307 (6)
H7	0.0631	-0.1823	-0.4589	0.033 (3)*
C8	0.2319 (4)	-0.07363 (19)	-0.4754 (3)	0.0344 (6)
H8	0.2803	-0.0920	-0.5658	0.033 (3)*
C9	0.2882 (4)	0.00714 (18)	-0.4039 (3)	0.0333 (6)
Н9	0.3730	0.0460	-0.4465	0.033 (3)*
C10	0.2200 (4)	0.03048 (17)	-0.2706 (3)	0.0273 (5)
H10	0.2598	0.0860	-0.2226	0.033 (3)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ru	0.02017 (14)	0.01732 (13)	0.01542 (13)	0.00075 (10)	0.00439 (9)	-0.00161 (10)
Cl1	0.0339 (3)	0.0278 (3)	0.0268 (3)	0.0094 (3)	0.0055 (3)	0.0018 (3)
N1	0.0196 (10)	0.0255 (10)	0.0163 (9)	0.0011 (8)	0.0032 (8)	-0.0005 (8)
N2	0.0226 (10)	0.0228 (10)	0.0167 (9)	0.0017 (8)	0.0045 (8)	-0.0008 (7)
C1	0.0246 (12)	0.0245 (12)	0.0242 (13)	0.0042 (10)	0.0053 (10)	0.0006 (9)
C2	0.0206 (12)	0.0333 (13)	0.0328 (14)	-0.0006 (10)	0.0036 (11)	0.0009 (11)
C3	0.0306 (14)	0.0311 (13)	0.0395 (16)	-0.0061 (11)	0.0038 (12)	-0.0120 (12)
C4	0.0314 (14)	0.0300 (13)	0.0348 (15)	-0.0028 (11)	0.0074 (12)	-0.0133 (11)
C5	0.0233 (12)	0.0233 (11)	0.0203 (12)	0.0022 (9)	0.0036 (9)	-0.0036 (9)
C6	0.0244 (12)	0.0253 (12)	0.0191 (12)	0.0043 (9)	0.0022 (10)	-0.0030 (9)
C7	0.0288 (13)	0.0358 (14)	0.0275 (13)	0.0033 (11)	0.0048 (11)	-0.0110 (11)

supplementary materials

C8	0.0322 (14)	0.0505 (16)	0.0224 (13)	0.0041 (13)	0.0097 (11)	-0.0054 (12)
C9	0.0319 (14)	0.0431 (15)	0.0279 (13)	0.0002 (12)	0.0136 (11)	0.0069 (12)
C10	0.0308 (13)	0.0275 (12)	0.0247 (13)	-0.0014 (10)	0.0084 (11)	0.0015 (10)
Geometric para	meters (Å, °)					
Ru—N2		2.0560 (19)	C3—0	C4	1.38	38 (4)
Ru—N2 ⁱ		2.0560 (19)	C3—I	H3	0.95	500
Ru—N1		2.0632 (18)	C4—0	C5	1.38	35 (3)
Ru—N1 ⁱ		2.0632 (18)	C4—I	H4	0.95	500
Ru—Cl1 ⁱ		2.3893 (6)	C5—0	C6	1.46	58 (3)
Ru—Cl1		2.3893 (6)	C6—0	C7	1.38	34 (3)
N1-C1		1.345 (3)	С7—0	C8	1.37	78 (4)
N1—C5		1.356 (3)	C7—I	H7	0.95	500
N2-C10		1.340 (3)	C8—0	C9	1.38	36 (4)
N2—C6		1.361 (3)	C8—I	H8	0.95	500
C1—C2		1.376 (3)	С9—С	C10	1.37	75 (4)
C1—H1		0.9500	C9—I	H9	0.95	500
C2—C3		1.377 (4)	C10—	-H10	0.95	500
С2—Н2		0.9500				
N2—Ru—N2 ⁱ		180.00 (9)	C3—0	С2—Н2	120	.3
N2—Ru—N1		77.38 (7)	C2—0	C3—C4	118	.5 (2)
N2 ⁱ —Ru—N1		102.62 (7)	C2—0	С3—Н3	120	.8
N2—Ru—N1 ⁱ		102.62 (7)	C4—0	С3—Н3	120	.8
N2 ⁱ —Ru—N1 ⁱ		77.38 (7)	C5—0	C4—C3	119	.6 (2)
N1—Ru—N1 ⁱ		180.00 (12)	C5—0	С4—Н4	120	.2
N2—Ru—Cl1 ⁱ		89.32 (5)	C3—0	С4—Н4	120	.2
N2 ⁱ —Ru—Cl1 ⁱ		90.68 (5)	N1—0	С5—С4	121	.4 (2)
N1—Ru—Cl1 ⁱ		87.32 (5)	N1—0	С5—С6	114	.42 (19)
N1 ⁱ —Ru—Cl1 ⁱ		92.68 (5)	C4—0	С5—С6	123	.7 (2)
N2—Ru—Cl1		90.68 (5)	N2—0	С6—С7	121	.9 (2)
N2 ⁱ —Ru—Cl1		89.32 (5)	N2—0	C6—C5	113	.6 (2)
N1—Ru—Cl1		92.68 (5)	С7—0	C6—C5	123	.8 (2)
N1 ⁱ —Ru—Cl1		87.31 (5)	C8—0	С7—С6	119	.6 (2)
Cl1 ⁱ —Ru—Cl1		180.00 (3)	C8—0	С7—Н7	120	.2
C1—N1—C5		117.97 (19)	C6—0	С7—Н7	120	.2
C1—N1—Ru		127.93 (16)	С7—0	С8—С9	118	.4 (2)
C5—N1—Ru		113.93 (15)	С7—(С8—Н8	120	.8
C10—N2—C6		117.5 (2)	С9—(С8—Н8	120	.8
C10—N2—Ru		127.67 (16)	C10—	-C9C8	119	.3 (2)
C6—N2—Ru		114.84 (16)	C10—	-С9—Н9	120	.4
N1—C1—C2		122.8 (2)	C8—0	С9—Н9	120	.4
N1—C1—H1		118.6	N2—0	С10—С9	123	.0 (2)
C2—C1—H1		118.6	N2—0	С10—Н10	118	.5
C1—C2—C3		119.3 (2)	С9—(С10—Н10	118	.5
C1—C2—H2		120.3				

N2—Ru—N1—C1	-163.6 (2)	C1—N1—C5—C4	-7.4 (3)
N2 ⁱ —Ru—N1—C1	16.4 (2)	Ru—N1—C5—C4	168.23 (18)
Cl1 ⁱ —Ru—N1—C1	106.46 (19)	C1—N1—C5—C6	164.8 (2)
Cl1—Ru—N1—C1	-73.54 (19)	Ru—N1—C5—C6	-19.6 (2)
N2—Ru—N1—C5	21.26 (15)	C3—C4—C5—N1	3.9 (4)
N2 ⁱ —Ru—N1—C5	-158.74 (15)	C3—C4—C5—C6	-167.5 (2)
Cl1 ⁱ —Ru—N1—C5	-68.65 (15)	C10—N2—C6—C7	6.1 (3)
Cl1—Ru—N1—C5	111.35 (15)	Ru—N2—C6—C7	-173.60 (18)
N1—Ru—N2—C10	160.5 (2)	C10—N2—C6—C5	-164.9 (2)
N1 ⁱ —Ru—N2—C10	-19.5 (2)	Ru—N2—C6—C5	15.4 (2)
Cl1 ⁱ —Ru—N2—C10	-112.12 (19)	N1C5	2.9 (3)
Cl1—Ru—N2—C10	67.88 (19)	C4—C5—C6—N2	174.9 (2)
N1—Ru—N2—C6	-19.82 (15)	N1-C5-C6-C7	-168.0 (2)
N1 ⁱ —Ru—N2—C6	160.18 (15)	C4—C5—C6—C7	4.0 (4)
Cl1 ⁱ —Ru—N2—C6	67.58 (15)	N2—C6—C7—C8	-4.3 (4)
Cl1—Ru—N2—C6	-112.42 (15)	C5—C6—C7—C8	165.8 (2)
C5—N1—C1—C2	5.6 (3)	C6—C7—C8—C9	0.1 (4)
Ru—N1—C1—C2	-169.29 (17)	C7—C8—C9—C10	2.0 (4)
N1—C1—C2—C3	-0.4 (4)	C6—N2—C10—C9	-4.0 (3)
C1—C2—C3—C4	-3.2 (4)	Ru—N2—C10—C9	175.73 (18)
C2—C3—C4—C5	1.5 (4)	C8—C9—C10—N2	0.0 (4)
Symmetry codes: (i) $-x$, $-y$, $-z$.			
Hydrogen-bond geometry (Å, °)			
D 11 (

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C3—H3···Cl1 ⁱⁱ	0.95	2.72	3.573 (3)	150
Symmetry codes: (ii) $-x-1$, $y-1/2$, $-z-1/2$.				

